

LUSAS for Ground Engineering and Soil-Structure Interaction Modelling

LUSAS – The Company

- Headquartered in the UK, with a global presence
- Over 30 years in the business, with origins in Imperial College, London
- Develops, markets and supports a range of LUSAS software products used in all engineering industries
- Also offers consultancy services

'LUSAS'

London University
Structural Analysis System

Global coverage and support

Bridge engineering

Composites engineering

LUSAS

Engineering analysis and design software

Specialist Applications

Teaching and Research

General mechanical engineering

Why use LUSAS for Geotechnics/SSI?

Model ground and structure in a single model

- Represent soil as continuums or interfaces (active / passive joints) and in 2D or 3D
- Nonlinear soil material models include Mohr Coulomb, Modified Cam Clay, Drucker-Prager...
- Water phase analysis for consolidation and seepage effects
- Time stage facilities for excavation and filling processes
- Linear and nonlinear soil dynamics

Application areas

• Use for:

- Pad, Pile and Basement Foundations
- Tunnelling and Excavations
- Retaining Walls
- Integral Bridges
- Dams

• To investigate:

- Bearing Capacity
- Overturning
- Stability
- Consolidation
- Seepage

Working with LUSAS

- Easy-to-use application-specific Modeller
- Fully integrated **Solver** which can be used independently.
- Models are formed of <u>layers</u> and are created using <u>feature-based</u> geometry methods (points, lines, surfaces, volumes)
- Easy to use <u>mesh refinement</u> capabilities
- Associative modelling provides an intelligent link between all model data

General modelling tools

CAD Import / Export

- Points and lines through DXF
- Points, lines, surfaces and volumes through IGES/STEP
- Triangulated surfaces from ground models through STL

Drawing Tools

- Snap to grids
- Arcs, Splines
- Copy, Mirror, Rotate, Scale, Transform
- Extrude, Intersect and Manifold
- Subtract, Union

Example modelling in 2D

Example modelling in 3D

Meshing tools

- General Facilities:
 - Linear and Quadratic formulations
 - Mesh refinement
- 2D Meshing:
 - Quads and Triangles
- 3D Meshing:
 - Tetrahedral
 - Penta/Hexahedral

Soil and structural material models

- Constitutive Soils models
 - Tresca
 - Von Mises
 - Druker Prager
 - Mohr Coulomb
 - Cam Clay
- Structural Models
 - Concrete Cracking and Crushing
 - Steel yielding

All models can incorporate strain hardening and softening

Boundary Modelling

- Modelling of soil-structure interface:
 - Linear springs
 - Non Linear (Active-Passive)
 - Hysteretic behaviour (cyclic loading / unloading)

Deep excavations

LOAD CASE = 22 Increment 22 RESULTS FILE = PLASTIC STRAIN

RESULTS FILE =

0.0242541 0.066065

0.107876

0.149687

0.191498

0.233309

0.27512

0.316931

0.358742 0.400553

0.442364

0.484175

0.525986 0.567797

0.609607 0.651418

DISPLACEMENT

Deep excavations

- Construction sequence including temporary and permanent propping
- Design of wall and props in single model

Seismicity in soils

- Multiple seismic events
- Analysis of nonlinear reinforced concrete and soils
- Time-history of all stresses including contact stresses through event

Caisson / ground contact during seismic event

Rock bolting

 Excavation with rock bolts and gunite concrete wall

Stability of embankments

• Formation of slip circle

Sevenoaks slip in Weald clay

Stability of embankments

• Formation of slip circle and strata in 2D and 3D

Typical Application Consolidation and Seepage

- Consolidation
 - Pore-Water pressure
 - equalisation with time
 - 2D and 3D
- Seepage
 - Dams
 - Dewatering

Tunnelling

 Analysis of vertical displacement of backfill in tunnel with increased pressure

Tunnel Linings

 Longitudinal stress and displacement in tunnel segment under service load

Soil-Structure Vibration

- Modal and Time History Dynamics
- Material damping
- Nonlinear behaviour
 - Soil plasticity
- Boundary behaviour
 - Spring/damping

Nodal displacement at top of buildin vs Response to

As used on these projects...

Click images to see projects

Bodcau Bayou Bridge

Devonport Royal Dockyard

Götatunneln

Söderström Tunnel

Sperritt Tunnel

Muela Dam

Bodcau Bayou bridge

Gota tunnel

Sperritt tunnel

As used on Devonport Royal Dockyard

Soderstrom tunnel

Muela dam

Key advantages of using LUSAS

- Detailed soil and structure models can be analysed in a single program e.g. springs, 2D or 3D, linear or nonlinear
- Any geometry of soil strata can be modelled
- Time-dependent (consolidation/dewatering etc) modelling
- Excavation/backfill of soil, and staged construction
- Extensive soil and structural material models
- Contact and interface modelling
- Can model dynamic effects in soil/structure interaction

Bridge engineering

Composites engineering

LUSAS

Engineering analysis and design software

Specialist Applications

Teaching and Research

General mechanical engineering

Find out more at www.lusas.com